wsp

TECHNICAL NOTE 1

DATE:	24 June 2020	CONFIDENTIALITY:	Public
SUBJECT:	Cable Loss Calculations		
PROJECT:	Baddesley EfW	AUTHOR:	Simon Peacock
CHECKED:		APPROVED:	

SUMMARY

Active power (kW) loss	= 2333W (at 194A / 11.1MVA)
Reactive power (kVAr) loss	= 1990W (at 194 / 11.1MVA)

Dielectric loss	= 11.55W
Sheath loss	= 24W

Therefore, no load losses are negligible.

NB Eddy current will by zero (or extremely low) as circuit is triplex and bonded/earthed at both ends.

CABLE DATA

150mm Cu XLPE, V₁ 33kV, V_{ph} 19kV Installed in tight triplex; bonded and earthed both ends Length 130m Z = 0.209 ohm/km C = 0.196 microF/km R = 0.159 ohm/km @90deg C (ac) $X^2 = Z^2 - R^2$, $0.209^2 - 0.159^2$, X = 0.13564 ohm/km Loss angle = 0.004 $D_m = 0.04m$ (cable diameter) S = 0.041m (approx. dist between cable centres)

For 130m:

R = 0.159 * 130/1000	= <u>0.02067ohm</u>
X = 0.13564 * 130/1000	= <u>0.0176332ohm</u>
C = 0.196 * 130/1000	= <u>0.02548 microF</u>

vsp

TECHNICAL NOTE 1

DATE:	24 June 2020	CONFIDENTIALITY:	Public
SUBJECT:	Cable Loss Calculations		
PROJECT:	Baddesley EfW	AUTHOR:	Simon Peacock
CHECKED:		APPROVED:	

Generator output 11.1MVA

I = P / sqr3 *33000 = <u>194A</u> (NB Balanced load)

LOSS CALCULATIONS

Load loss at 11.1MVA

P_{tot}	= 3 * (l ² * R)	= 3 * (194 ² * 0.02067)	= <u>2333W</u>
Q _{tot}	= 3 * (l ² * X)	= 3 * 194 ² * 0.0176332)	= <u>1990W</u>

No Load Loss

Dielectric Loss (P_d) = 2 * pi * F * C * V_{ph}^{2*} loss angle = 314 * 0.196*10⁻⁶ * 19000² * 0.004, = <u>88W/km</u>

 $P_d = 88 * 130/1000 = 11.55W$

Sheath Loss

Sheath loss are eddy current and sheath circuit losses. Eddy currents are negligible as cable is triplex and earthed/bonded at both ends.

Sheath loss current induced emf from ac current in the main conductor.

$P_{loss-sheath}$	= $I^2 * R_s (X_m^2 / X_m^2 * R_s^2)$	(BICC cable handbook eq 2.16; $X_{m=}$ mutual reactance)
Xm	= 2 * pi * F * 0.2log _e (2S/d _m) * 10 ⁻³ c	hm/km
	= 314 * 0.2 log _e (2 * 0.041 / 0.04) * *	
	= <u>0.045 ohm/km</u>	
$P_{loss-sheath}$	= 194 ² *0.4 (0.045 ² / 0.045 ² + 0.4 ²)	*130/1000
	= <u>24W</u>	