TECHNICAL NOTE 1

DATE:	24 June 2020	CONFIDENTIALITY: Public	
SUBJECT:	Cable Loss Calculations		
PROJECT:	Baddesley EfW	AUTHOR:	Simon Peacock
CHECKED:		APPROVED:	

SUMMARY

Active power (kW) loss $=2333 \mathrm{~W}$ (at 194A / 11.1MVA)
Reactive power (kVAr) loss $=1990 \mathrm{~W}$ (at $194 / 11.1 \mathrm{MVA})$

Dielectric loss	$=11.55 \mathrm{~W}$
Sheath loss	$=24 \mathrm{~W}$

Therefore, no load losses are negligible.
NB Eddy current will by zero (or extremely low) as circuit is triplex and bonded/earthed at both ends.

CABLE DATA

150 mm Cu XLPE, $\mathrm{V}_{\mathrm{I}} 33 \mathrm{kV}$, $\mathrm{V}_{\mathrm{ph}} 19 \mathrm{kV}$
Installed in tight triplex; bonded and earthed both ends
Length 130m
$\mathrm{Z}=0.209 \mathrm{ohm} / \mathrm{km}$
$\mathrm{C}=0.196 \mathrm{microF} / \mathrm{km}$
$\mathrm{R}=0.159$ ohm/km @90deg C (ac)
$X^{2}=Z^{2}-R^{2}, 0.209^{2}-0.159^{2}$,
$X=\underline{0.13564 ~ o h m} / \mathrm{km}$
Loss angle $=0.004$
$D_{m}=0.04 m$ (cable diameter)
$S=0.041 \mathrm{~m}$ (approx. dist between cable centres)

For 130m:

$R=0.159 * 130 / 1000$	$=\underline{0.02067 o h m}$
$X=0.13564 * 130 / 1000$	$=\underline{0.0176332 \mathrm{ohm}}$
$C=0.196 * 130 / 1000$	$=\underline{0.02548 \mathrm{microF}}$

TECHNICAL NOTE 1

DATE:	24 June 2020	CONFIDENTIALITY:	Public
SUBJECT:	Cable Loss Calculations		
PROJECT:	Baddesley EfW	AUTHOR:	Simon Peacock
CHECKED:		APPROVED:	

Generator output 11.1MVA

I = P / sqr3 *33000 = 194A (NB Balanced load)

LOSS CALCULATIONS

Load loss at 11.1MVA

| $P_{\text {tot }}=3^{*}\left(I^{*} R\right)=3^{*}\left(194^{2} * 0.02067\right)$ | $=\underline{2333 W}$ |
| :--- | :--- | :--- |
| $\left.Q_{\text {tot }}=3 *\left(I^{*} X\right)=3^{*} 194^{*} 0.0176332\right)$ | $=\underline{1990 W}$ |

No Load Loss

Dielectric Loss $\left(\mathrm{P}_{\mathrm{d}}\right)=2{ }^{*} \mathrm{pi}^{*} \mathrm{~F}^{*} \mathrm{C}$ * $\mathrm{V}_{\mathrm{ph}}{ }^{2}$ * loss angle

$$
=314 * 0.196 * 10^{-6} * 19000^{2} * 0.004,
$$

$$
=88 \mathrm{~W} / \mathrm{km}
$$

$P_{d}=88 * 130 / 1000=\underline{11.55 \mathrm{~W}}$

Sheath Loss

Sheath loss are eddy current and sheath circuit losses. Eddy currents are negligible as cable is triplex and earthed/bonded at both ends.

Sheath loss current induced emf from ac current in the main conductor.
$P_{\text {loss-sheath }} \quad=I^{2 *} R_{s}\left(X_{m}{ }^{2} / X_{m}{ }^{2}{ }^{*} R_{s}{ }^{2}\right)$
(BICC cable handbook eq 2.16; X_{m} = mutual reactance)
$X_{m} \quad=2 *$ pi $^{*} F^{*} 0.2 \log _{e}\left(2 S / d_{m}\right) * 10^{-3} \mathrm{ohm} / \mathrm{km}$
$=314{ }^{*} 0.2 \log _{e}(2 * 0.041 / 0.04){ }^{*} 10^{-3}$
$=\underline{0.045 \mathrm{ohm} / \mathrm{km}}$
$P_{\text {loss-sheath }}=194^{2}{ }^{*} 0.4\left(0.045^{2} / 0.045^{2}+0.4^{2}\right) * 130 / 1000$
$=\underline{24 W}$

